Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate

نویسندگان

  • F. Garel
  • S. Goes
  • D. R. Davies
  • J. H. Davies
  • S. C. Kramer
  • C. R. Wilson
چکیده

Transition zone slab deformation influences Earth’s thermal, chemical, and tectonic evolution. However, the mechanisms responsible for the wide range of imaged slab morphologies remain debated. Here we use 2-D thermo-mechanical models with a mobile trench, an overriding plate, a temperature and stress-dependent rheology, and a 10, 30, or 100-fold increase in lower mantle viscosity, to investigate the effect of initial subducting and overriding-plate ages on slab-transition zone interaction. Four subduction styles emerge: (i) a ‘‘vertical folding’’ mode, with a quasi-stationary trench, near-vertical subduction, and buckling/folding at depth (VF); (ii) slabs that induce mild trench retreat, which are flattened/‘‘horizontally deflected’’ and stagnate at the upper-lower mantle interface (HD); (iii) inclined slabs, which result from rapid sinking and strong trench retreat (ISR); (iv) a two-stage mode, displaying backward-bent and subsequently inclined slabs, with late trench retreat (BIR). Transitions from regime (i) to (iii) occur with increasing subducting plate age (i.e., buoyancy and strength). Regime (iv) develops for old (strong) subducting and overriding plates. We find that the interplay between trench motion and slab deformation at depth dictates the subduction style, both being controlled by slab strength, which is consistent with predictions from previous compositional subduction models. However, due to feedbacks between deformation, sinking rate, temperature, and slab strength, the subducting plate buoyancy, overriding plate strength, and upper-lower mantle viscosity jump are also important controls in thermo-mechanical subduction. For intermediate upper-lower mantle viscosity jumps (330), our regimes reproduce the diverse range of seismically imaged slab morphologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subduction zone evolution and low viscosity wedges and channels

Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantia...

متن کامل

Subduction zones: observations and geodynamic models

This review of subduction and geodynamic models is organized around three central questions: (1) Why is subduction asymmetric? (2) Are subducted slabs strong or weak? (3) How do subducted slabs interact with phase transformations, changes in mantle rheology, and possibly chemical boundaries in the mantle? Based on laboratory measurements of the temperature dependence of olivine, one would concl...

متن کامل

Controls on trench topography from dynamic models of subducted slabs

A finite element method with constrained elements and Lagrange multipliers is used to study tectonic faults in a viscous medium. A fault, representing the interface between overriding and subducting plates, has been incorporated into a viscous flow model of a subduction zone in which both thermal buoyancy and the buoyancy associated with the phase change from olivine to spinel are included. The...

متن کامل

Modes of Slab Behavior: from the Transition Zone to the Mid-lower Mantle

Subducting slabs may exhibit buckling instabilities and consequent folding behavior in the mantle transition zone, accompanied by temporal variations in dip angle, plate velocity, and trench retreat. Governing parameters include both viscous (rheological) and buoyancy (thermopetrological) forces. Numerical experiments suggest that many parameter sets lead to slab deflection at the base of the t...

متن کامل

Trench migration and overriding plate stress in dynamic subduction models

S U M M A R Y On Earth, oceanic plates subduct beneath a variety of overriding plate (OP) styles, from relatively thin and negatively buoyant oceanic OPs to thick and neutrally/positively buoyant continental OPs. The inclusion of an OP in numerical models of self-consistent subduction has been shown to reduce the rate that subducting slabs roll back relative to the equivalent single plate model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017